Let's look @ some concegnences of non-equilibrium work relations for the 2nd Law.

First: Jensen's inequality:
(ex) > e <x>

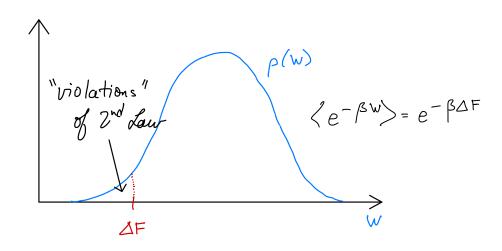
To show this, first note that $e^{y} \ge y+1 \qquad = \qquad \text{draw both}$ sides!Then $\langle e^{\times} \rangle = \langle e^{\times -\langle \times \rangle} \rangle e^{\langle \times \rangle}$

 $\geq \langle x - \langle x \rangle + 1 \rangle e^{\langle x \rangle} = e^{\langle x \rangle}$

We then get: $e^{-\beta\Delta F} = \langle e^{-\beta W} \rangle \geqslant e^{-\beta \langle W \rangle}$ $\Delta F \leq \langle W \rangle$

We already expected this result from the 2nd Law, & we have derived it using lifferent egns. of motion.

Now let's oftain a stronger result ...



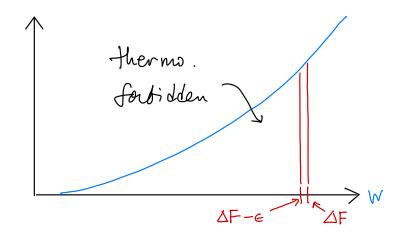
P(W & DF-E) = probability that the 2nd Law is violated by at least &

$$= \int_{-\infty}^{\Delta F - \epsilon} dW \rho(W)$$

$$\leq e^{\beta(\Delta F - \epsilon)} \int_{-\infty}^{+\infty} \rho(w) e^{-\beta w} = e^{-\beta \epsilon}$$

thermodynamically forbidden area underneath tail locays exponentially (or faster!) with BE △F- €

Can we say anything about the net probability of seeing a "violation" of the 2" Law?



 $P(W \leq \Delta F - \epsilon) \leq e^{-\beta \epsilon}$

As $\varepsilon \to 0^+$, this result becomes $P(W < \Delta F) < 1$, which seems weak.

Can we derive a tighter bound, i.e. is there some number $p_0 < 1$ s.t. $P(W < \Delta F) < p_0$ for all systems? No!

Editors' Suggestion

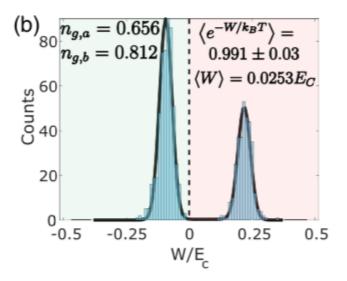
Optimal Probabilistic Work Extraction beyond the Free Energy Difference with a Single-Electron Device

Olivier Maillet,^{1,*} Paolo A. Erdman,² Vasco Cavina,² Bibek Bhandari,² Elsa T. Mannila,¹ Joonas T. Peltonen,¹
Andrea Mari,² Fabio Taddei,² Christopher Jarzynski,³ Vittorio Giovannetti,² and Jukka P. Pekola¹

**QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland

**2NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy

3University of Maryland, College Park, Maryland 20742, USA



This is one histogram, not two! It is bimodal, and the left peak corresponds to "violations" of the Second Law.

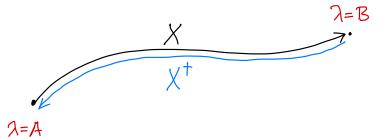
$$P(W < \Delta F) = 0.65$$

Guessing the direction of Time's Arrow

Sir Arthur Eddington, 1927

Recall from Agr. 30 lecture:

$$\frac{P_{F}[X]}{P_{R}[X^{+}]} = e^{\beta(W-\Delta F)}$$



Suppose I show you a movie of the trajectory

X, as $\lambda:A\to B$. You must given whether

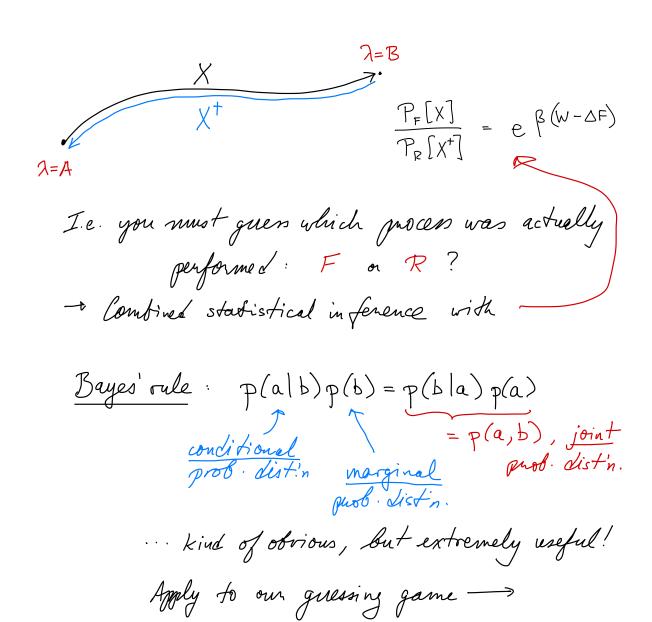
you are observing the events in the order

in which they actually occurred, or whether

I performed & filmed the neverse process,

& can numing the movie backward

in an attempt to deceive you.



Two hypotheses:
$$F \notin \mathbb{R}$$

observation: X (trajectory, $\sqrt[M]{A}:A \to \mathbb{B}$)

 $P(F|X) = \text{likelihood}$ of F , given X

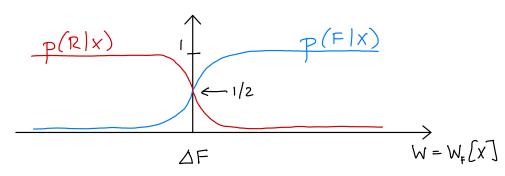
hypothesis data

$$\begin{cases} P(X|F) = P_F[X] \\ P(X|R) = P_R[X^+] \end{cases} = \text{If process } \mathbb{R} \text{ is performed}$$
 $\text{$A$ the result is X^+, you will see X in the movie.}$
 $\text{$B$ ayes' Rule} \to P(F|X) = \frac{P(X|F) p(F)}{P(X)}$
 $\text{$A$ number result for $p(R|X)$}$
 $\text{$A$ number result for $p(R|X)$}$
 $\text{$A$ p(F|X) = \frac{P(X|F)}{P(X|R)} \frac{P(F)}{P(R)} = \frac{P(X|F)}{P_R[X^+]} = e^{\frac{B(N-\Delta F)}{P_R[X^-]}}$
 $\text{$A$ assume equal}$

Normalization: p(FIX) + q(RIX) = 1

These combine to give

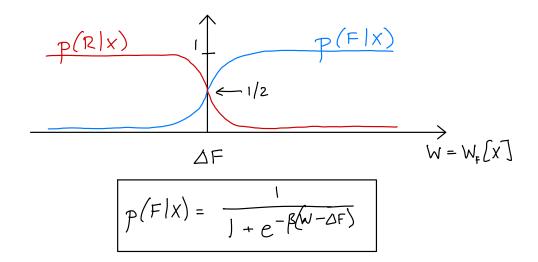
$$P(F|X) = \frac{1}{1 + e^{-\beta(W - \Delta F)}} = 1 - \beta(R|X)$$



This is consistent w/ 2nd Law:

if $W-\Delta F\gg k_BT$, then with near centainty you're watching the events in the order in which they occurred: $P(F|X)\simeq 1$.

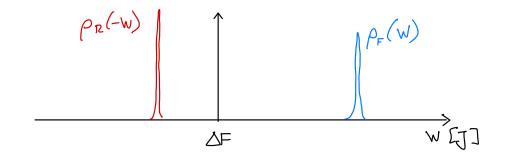
If $W-\Delta F \ll -k_B T$, then $P(R|X) \simeq 1$ as the movie depicts a large violation of the 2^{nd} Law.



This result quantifies your ability to determine the direction of Time's Arrow, even when W ~ DF.

Independent of system size or degree of irreversibility!

If we plot p(F|X) on a W-axis with macroscopic units, e.g. Joules, then it looks like a step function: $p(F|X) \cong \Theta(W - \Delta F)$



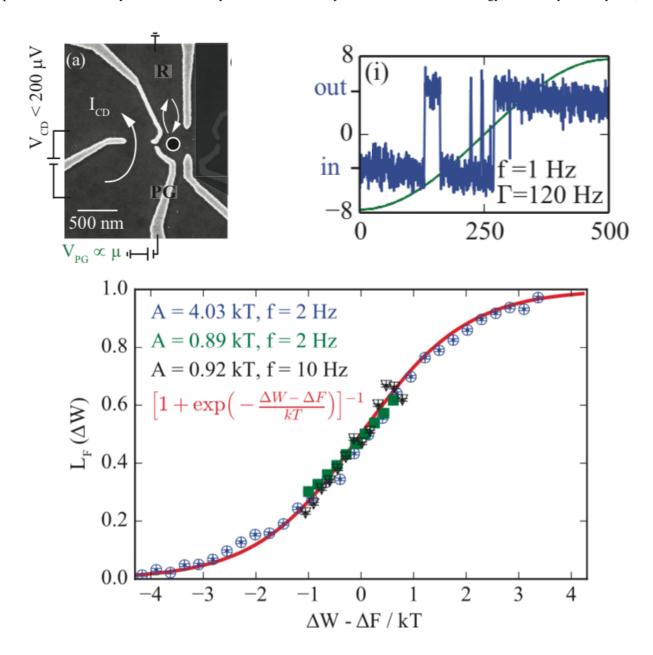
Part of Special Issue on Single-Electron Control in Solid-State Devices

basic solid state physics

Heat dissipation and fluctuations in a driven quantum dot

Andrea Hofmann^{*,1}, Ville F. Maisi¹, Julien Basset¹, Christian Reichl¹, Werner Wegscheider¹, Thomas Ihn¹, Klaus Ensslin¹, and Christopher Jarzynski^{*,2}

² Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, USA



¹ Laboratory for Solid State Physics, ETH Zurich, Switzerland